Exploratory behaviour in NO-dependent cyclase mutants of Drosophila shows defects in coincident neuronal signalling
نویسندگان
چکیده
منابع مشابه
NO signalling in mice lacking the NO receptor guanylyl cyclase
NO-sensitive guanylyl cyclase (NO-GC) is accepted to be the major receptor for the signaling molecule NO. NO-GC catalyzes the production of the intracellular second messenger cGMP and thereby has a key regulatory function regarding various physiological processes. NO-GC is made up of one β subunit and one α subunit. On the protein level, there are two α subunits (α1 and α2) and one β subunit (β...
متن کاملMolecular defects in Drosophila rhodopsin mutants.
Four well characterized Drosophila rhodopsin (ninaE) mutants possess low levels of rhodopsin in their major class of photoreceptors. The molecular defect present in each strain was determined by isolating and sequencing the mutant genes. Two missense mutants encode proteins which have arginine residues positioned within membrane-spanning domains. The third missense mutant eliminates a proline f...
متن کاملCeramides And Stress Signalling Intersect With Autophagic Defects In Neurodegenerative Drosophila blue cheese (bchs) Mutants.
Sphingolipid metabolites are involved in the regulation of autophagy, a degradative recycling process that is required to prevent neuronal degeneration. Drosophila blue cheese mutants neurodegenerate due to perturbations in autophagic flux, and consequent accumulation of ubiquitinated aggregates. Here, we demonstrate that blue cheese mutant brains exhibit an elevation in total ceramide levels; ...
متن کاملNeuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila.
The development of the nervous system is influenced by environmental factors. Among all environmental factors, temperature belongs to a unique category. Besides activating some specific sensory pathways, it exerts nonspecific, pervasive effects directly on the entire nervous system, especially in exothermic species. This study uses mutants to genetically discover how temperature affects nerve t...
متن کاملNeurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants
miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2007
ISSN: 1471-2202
DOI: 10.1186/1471-2202-8-65